ℓ_{\perp} to ℓ , respectively. By the Triangle Inequality, we have

$$\sum_{i=1}^{4n} |x_i| + \sum_{i=1}^{4n} |y_i| \geq \sum_{i=1}^{4n} |s_i| = 4n.$$

We consider three cases. First, if $\sum\limits_{i=1}^{4n}|x_i|>2n$, then there is a point P on ℓ that belongs to two of the x_i . In this case, the perpendicular to ℓ through P is a suitable choice for ℓ' . Second, if $\sum\limits_{i=1}^{4n}|y_i|>2n$, then there is a point Q on ℓ_\perp that belongs to two of the y_i . The parallel line to ℓ through Q is a suitable choice for ℓ' . It remains to consider the case $\sum\limits_{i=1}^{4n}|x_i|=\sum\limits_{i=1}^{4n}|y_i|=2n$. In this situation, the parallel line to ℓ through the midpoint of Γ is adequate for ℓ' .

3. Let a,b,c, and d be positive real numbers such that a+b+c+d=1. Prove that $6\left(a^3+b^3+c^3+d^3\right)\geq \left(a^2+b^2+c^2+d^2\right)+\frac{1}{8}$.

Solved by Mohammed Aassila, Strasbourg, France; Arkady Alt, San Jose, CA, USA; and Titu Zvonaru, Cománeşti, Romania. We give Alt's presentation.

By the Power Mean Inequality

$$\frac{a^3 + b^3 + c^3 + d^3}{4} \ge \left(\frac{a + b + c + d}{4}\right)^3;$$

$$a^3 + b^3 + c^3 + d^3 \ge \frac{(a + b + c + d)^3}{16} = \frac{1}{16},$$

and by Chebychev's inequality

$$a^3 + b^3 + c^3 + d^3 \ge \frac{a+b+c+d}{4}(a^2 + b^2 + c^2 + d^2) = \frac{a^2 + b^2 + c^2 + d^2}{4}.$$

This yields

$$\begin{aligned} &6(a^3+b^3+c^3+d^3)\\ &=& 4(a^3+b^3+c^3+d^3)+2(a^3+b^3+c^3+d^3)\\ &\geq& (a^2+b^2+c^2+d^2)+\frac{1}{8}\,, \end{aligned}$$

as desired

Next we move to solutions to problems of the Hong Kong Team Selection Test 1 given at [2009:214].

1. Find the integer solutions of the equation $7(x+y) = 3(x^2 - xy + y^2)$.